Nanocrystalline transformer core wholesale manufacturer today

Posted by John Concrane on April 7, 2024 in Industrial

Premium amorphous transformer core factory supplier: Nanocrystalline cores are advanced materials used in the construction of transformers and inductors. The nanocrystalline transformer core is made up of tiny crystalline grains, typically measuring just a few nanometers in size. The small grain structure allows for superior magnetic properties, including high permeability and low coercivity. This results in reduced core losses and improved efficiency, making nanocrystalline cores an ideal choice for high-frequency applications where minimizing energy loss is crucial. The excellent thermal stability of nanocrystalline magnetic core ensures consistent performance over a wide range of temperatures. See extra details on amorphous cores.

Characteristics and application of nanocrystalline magnetic core: High permeability, nanocrystalline Fe73 5Cu1Nb3Si13. 5B9 alloy has high saturation magnetic induction. The material becomes brittle after heat treatment and is easy to be processed into alloy powder. Compared with the nanocrystalline magnetic core wound with strip, the magnetic permeability of the nanocrystalline magnetic core is still very low and the soft magnetic properties are unstable. At present, the urgent problems to be solved are as follows: 1. Effectively control the growth of nanocrystals during heat treatment; 2. Molding of magnetic particle core; 3 Effect of heat treatment specification on soft magnetic properties of magnetic particle core.

Fe based amorphous alloys are competing with silicon steel in power frequency and medium frequency fields. Compared with silicon steel, iron-based amorphous alloy has the following advantages and disadvantages. The saturated magnetic flux density BS of iron-based amorphous alloy is lower than that of silicon steel. The filling coefficient of Fe based amorphous alloy core is 0.84 ~ 0.86. It shows that Fe based amorphous alloy has better resistance to power waveform distortion than silicon steel.

As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served.

We know that the actual transformer always works in AC state, and the power loss is not only on the resistance of the coil, but also in the iron core magnetized by alternating current. Usually, the power loss in the iron core is called “iron loss”. The iron loss is caused by two reasons, one is “hysteresis loss” and the other is “eddy current loss”. Nanocrystalline magnetic core is a small part with magnetic conductivity. There are nanocrystalline particles with small particles in the center of nanocrystalline magnetic core. The working principle of nanocrystalline magnetic core is to absorb the common mode current in the cable through the principle of induction heating and convert it into heat to dissipate. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size. See more information on https://www.transmartcore.com/.

As the iron core of the transformer, generally 0.35mm thick cold-rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size.