Copper turned parts supplier from China

Posted by Marian Vasilescu on July 13, 2025 in Business

Best copper turned parts factory: Tooling Precision and Press Capabilities – Forming, stamping, and bending are frequent operations used in copper parts. The repeatability, as well as the edge definition, directly depends on tooling precision. The supplier has to keep their dies, jigs, and fixtures in proper condition so as to produce dimensionally stable products. Enquire about the press tonnage and depth limits of forming. Are they capable of turns with a tight radius without cracking the edges? There should be proper die registration and forming pressure control in the case of small part tolerances. In electronics or cooling systems sectors, tolerances are usually measured in microns. A good manufacturer provides accurate batch to batches. They can validate wear of tooling, calibration of the press, as well as die life. Read extra details on copper turned components manufacturer.

Design for Manufacturability (DFM) – Design for Manufacturability (DFM) principles aim to simplify production and reduce costs. By considering the manufacturing process during the design phase, you can create parts that are easier and more economical to produce. Minimize the Number of Setups: Reducing the number of setups required for machining a part can save time and money. Design your parts in a way that allows multiple features to be machined in a single setup. This approach minimizes the need for repositioning, which can introduce errors and increase machining time.

The stamping process is generally divided into forming and separation processes. Fortuna is mainly customized and designed through customer drawings. It generally goes through 10 steps such as DFM Evaluation, Mold Design, Mold Assembly, Sample Submission, and Mass Production to achieve a project. After stamping and forming, we will also perform electroplating, heat treatment, tapping, riveting and other processes on the product according to customer needs to ensure that the product will not be oxidized, deformed and other product defects. Our company currently has 70 stamping equipments, most of which are high-precision equipment imported from Japan. The main brands are Chin Feng, AOMATE, Aida, DOBBY, etc.

These equipments adopt computer digital control technology, which can adapt to various metal stamping processing processes, are easy to operate, and have the characteristics of high speed and high accuracy. Mainly used for processing various metal materials on metal stamping production lines. The automatic setting device can ensure that the mold operation is always stable and high-speed, and assists in some tasks on the processing line that require high-speed switching; The stroke is adjustable, the maximum stamping speed of our equipment is 1200/min, and it can be adjusted independently according to the production cycle required by the product.

It has high wear resistance, good high-temperature oxidation resistance, good rust resistance after quenching and polishing, and small heat treatment deformation. Used to manufacture various cold work molds, cutting tools and measuring tools that require high precision and long life, such as drawing dies, cold extrusion dies, etc. Steel has high toughness and wear resistance, and has a higher resistance to tempering. Often used to manufacture molds with high requirements, such as drawing molds, impact grinding wheel molds, etc. Read more information on https://www.dgmetalstamping.com/.

In-mold riveting can be used for multiple sets of molds, reducing costs while ensuring smooth production. Achievable effects:Our in-mold riveting technology is very mature and can be used in automatic riveting equipment. The product riveting speed can reach 100 times/min. The automated sensor control system is used to monitor the quality of the product riveting assembly in real time and reduce the defective product rate. Fortuna has excellent advantages in the design and processing of rolling molds. It has 20 years of experience, especially for the rounding of metal stamping products, the angle and accuracy can be controlled. Products produced through product rolling round mold can achieve a roundness tolerance of 0.03mm, and realize high-tech solutions such as riveting of multiple products in the mold, tapping in the mold, and welding in the mold.

Part Complexity and Geometries – Complex designs can significantly impact CNC machining time and cost. Simplifying part geometries where possible can lead to more efficient machining. However, complex parts are often necessary, especially in high-tech applications. For complex parts, consider using multi-axis CNC machines that can handle intricate shapes and features. Designing with these capabilities in mind can lead to more efficient and cost-effective manufacturing.

When designing threads, consider the depth and pitch carefully. Deep threads may require specialized tooling, while very fine threads can be challenging to machine accurately. Consulting threading standards and working closely with your machinist can ensure optimal results. Tooling Considerations In CNC Machining – Choosing the right tools and understanding their impact on the machining process is vital for achieving precision and efficiency in CNC machining. Here are key factors to consider when selecting and maintaining tools for optimal performance. Tool Selection – The choice of tools significantly impacts the CNC machining process. End mills, drills, taps, and other cutting tools come in various shapes and sizes, each suited for specific tasks. Selecting the right tool for the material and design is crucial for achieving the desired finish and accuracy.