Custom copper parts suppliers today

Posted by Patrick Moreau on July 17, 2025 in Manufacturing

Custom copper parts manufacturers from China: Looking for precision CNC lathed parts or metal stamping components? Dongguan Fortuna is your trusted one-stop solution. We have been serving the automotive, consumer electronics, and new energy sectors since 2003. From copper turned parts to assembly-ready stamping terminals, we support full-scale production with material selection, DFM support, and tight-tolerance output. All components are manufactured in-house, with global service coverage from China to Japan. Contact us today to discuss your project with our engineers and receive a prompt, expert response. What is the lead time for custom copper parts? Lead times can be varied. It is usually based on complexity and volume. Most standard copper components can be produced within 2 to 4 weeks after design approval and tooling setup. Can copper parts be produced in small batch quantities? Yes, a professional manufacturer can support both prototype runs and low-volume production. This is useful for testing, pilot projects, and specialised assemblies. What information do I need to request a quote? To receive an accurate quote, provide 3D drawings, material type, tolerance requirements, expected volumes, and any secondary processes like plating or assembly. Find even more information on https://www.dgmetalstamping.com/copper-turned-parts.html.

Recycling and Reusing Material: Implementing a recycling and reuse strategy for scrap materials can reduce costs. Recycling metal chips and reusing material where possible can lead to significant savings, especially in high-volume production. In summary, designing for CNC machining involves careful consideration of materials, tolerances, geometries, and tooling. By following best practices and incorporating specific design features, you can optimize the machining process and produce high-quality parts efficiently.

The factory has strong technical force, with 45 professional mold technicians and 5 mold design engineers, from product evaluation to mold design, manufacturing, assembly and production, a one-stop service. There are 70 sets stamping machines, punching tonnage from 25-200 tons, stamping speed can reach 1200 times/ min. We can produce different material with thickness 0.1-5.0MM, Single stamping terminal monthly maximum capacity is 30 million pieces, shrapnel is 5 million pieces. At present, the utilization rate of equipment stamping equipment is 60%. The factory has 40 sets of 5-axis CNC machines and 2 sets of 6-axis CNC machines that imported from Japan. The processing diameter is from 1.0-32MM, the processing precision is 0.005MM, and it can process different materials. The current equipment utilization rate is 70%. The factory is located in the Matigang Industrial Zone, Dalingshan Town, Dongguan City, a famous manufacturing city, 500 meters away from the highway intersection and 40 minutes drive from Shenzhen Airport.

The main frame of the high-rigidity machine tool is equipped with a slider balance device, a machine foot shock absorber and an emergency braking device, which not only ensures the safety of stamping technicians, but also ensures the accuracy of machine production and protects the service life of the punch and mold; it also It is equipped with a full set of auxiliary supporting devices, such as commonly used high-precision gap feeding devices, balancing devices, vibration reduction and noise reduction devices, to ensure its stamping performance. It has extremely high stamping accuracy and feeding accuracy. The stamping accuracy of each high-speed punch press can reach the accuracy standard, and the feeding accuracy can reach ±0.01~0.03mm, which is beneficial to improving the positioning accuracy of the work steps and reducing damage to equipment or molds caused by inaccurate feeding.

We usually use high-speed steel, cold work die steel, hot work die steel, carbon tool steel, etc., which have the characteristics of high hardness, high heat resistance, high strength, high tensile strength and toughness, and are widely used in various types of mold parts Processing, including forging dies, high-speed cutting, milling, etc. At present, our company has 7 Mitsubishi slow wire cutting machines with a processing accuracy of 0.002mm. They are mainly used to process various precision, small and complex terminals, shrapnel, and bracket molds, focusing on controlling the precision of the products. Read more details at https://www.dgmetalstamping.com/.

Customization of mold materials: select appropriate mold materials and processing methods based on the structure and material requirements of customer products to ensure that the mold produces products that meet customer drawing requirements; Product size and design customization: assist customers in optimizing drawings and designing and optimizing molds to meet the specific functional requirements of the product. Customization of quality requirements: set product quality standards according to the actual needs of customers. If necessary, cooperate with customers to purchase corresponding quality testing equipment to ensure that the products produced meet customer requirements.

CNC machining is a cornerstone of modern manufacturing, known for its precision and versatility. Whether you’re crafting intricate aerospace components or robust automotive parts, the design phase is critical. Getting it right can mean the difference between a smooth, efficient production run and costly, time-consuming errors. In this guide, we’ll explore essential tips and best practices for designing parts specifically for CNC machining. From selecting the right materials and understanding tolerances to optimizing tooling and prototyping, we’ll cover all aspects to help you create high-quality, cost-effective CNC machined parts.

Design Features To Optimize For CNC Machining – Incorporating specific design features can significantly improve the efficiency and quality of CNC machined parts. Paying attention to these details can enhance the machining process and result in superior products. Hole and Slot Design – Holes and slots are common features in CNC machined parts. Optimal hole sizes and depths vary depending on the material and intended function. Generally, avoiding extremely deep or very small holes can prevent issues during machining. When designing slots, consider the width, depth, and spacing. Properly designed slots can enhance the part’s functionality and make machining more straightforward. Avoiding overly narrow or deep slots can reduce the risk of tool breakage and ensure smooth machining.